Posts Tagged NS Savannah

Five things that probably shouldn’t be nuclear powered

Once upon a time, people thought the atom was the key to the future. It may have just been the ultimate threat to human existence at the time, but Cold War engineers thought nuclear power had plenty of utility as well.

Using a small chunk of metal to power a city for decades seems like a good deal, as long as you don’t consider radiation and the occasional bout of China Syndrome. Before people started thinking about those little foibles, they came up with some pretty creative uses for nuclear power.

Ford NucleonCars

A functioning nuclear-powered car was never actually built, but Ford toyed with the idea. The company’s 1958 Nucleon concept was a 3/8 scale model intended to show what a production atomic car could look like.

The Nucleon had the cab-forward look of the Dodge Deora (of Hot Wheels fame), but instead of a pickup bed for storing surfboards, it had a rear-mounted nuclear reactor. While it would have made an interesting rival for the Porsche 911, it’s probably best that the Nucleon never made it to production.

Convair NB-36HAirplanes

During the 1950s, ships took their place in the triad of strategic defense thanks to nuclear power, so it’s not surprising that the American and Soviet air forces wanted to extend that success to their strategic bombers.

Strategic bombers patrolled enemy airspace in anticipation of a nuclear strike, a la Dr. Strangelove. A bomber with the unlimited range of a nuclear submarine would definitely have been an asset.

While a nuclear reactor never powered a plane, both Cold War rivals sent them aloft in conventional aircraft to see if they and their heavy shielding could be lifted. The Americans built the Convair NB-36H, a variant of the B-36 Peacemaker, and the Soviets converted a TU-95 into the TU-95LAL.

General Electric also built a prototype reactor in Idaho for the follow-up to the NB-36H, the X-6, but thankfully it proved unnecessary. Advances in Intercontinental Ballistic Missiles (ICBMs) eventually negated the need for a long range nuclear-powered bomber.

Atomic airship illustrationAirships

If a nuclear wing aircraft couldn’t work, what about one with the Hindenburg’s propensity for spontaneous combustion? The airship was out of vogue by the 1950s, but that didn’t stop The U.S. Navy’s Bureau of Naval Weapons from proposing an atomic version as part of the Eisenhower Administration’s “Atoms for Peace” program.

The Navy reasoned that an airship’s low power requirements would allow it to use a lighter reactor, and that it serve as a “flying aircraft carrier,” defending itself with its own fighter planes.

An even more ambitious proposal appeared in a 1956 Mechanix Illustrated article. Author Frank Tinsley envisioned an airship 1,000 feet in length (nearly twice the length of the Hindenburg) that could be used to publicize the Atoms for Peace program.

Ike ended up building the nuclear cargo ship Savannah instead, and that’s probably for the better. Given large airships’ inability to stay aloft (the entire U.S. airship fleet of the 1930s was lost in crashes), it’s probably best that one didn’t take to the skies with a nuclear reactor on board.

Russian nuclear lighthouseLighthouses

Before GPS, lighthouses were all that kept mariners from crashing into rocky shorelines and underwater obstacles. To keep the lights on, keepers needed to make sure there was plenty of fuel or electricity at the lighthouses’ remote locations.

That must have seemed like too much of a hassle to the Russians, who built a few lighthouses powered by radioisotope thermoelectric generators (RTGs), the same type of generator that powers the Curiosity Mars rover.

Unlike nuclear reactors, RTGs rely solely on the energetic decay of a piece of radioactive material. As the material decays, it emits energy that is converted into electricity.

A box of plutonium might generate plenty of power for an otherwise inaccessible structure, but is it really a good idea to leave said plutonium unsupervised?

Project Pluto SLAMDrones

If you think the all-seeing Predator drone is scary, wait ‘til you meet “Project Pluto.” An atomic nightmare, it was a pilotless nuclear powered cruise missile that could launch its own nuclear weapons.

Known as a Supersonic Low-Altitude Missile (SLAM), Project Pluto’s mission profile exemplifies Cold War desperation. The reactor powered a ramjet, heating air fed into the craft as it moved and expanding it to produce thrust. this would have allowed a Pluto missile to travel at speeds up to Mach 3 and stay airborne for months at a time, allowing it to deliver a payload of hydrogen bombs to multiple targets.

It gets better though: Pluto’s unshielded nuclear reactor would spread radiation as it traveled along, making it pretty dangerous to the country that launched it. Developers believed low altitude supersonic shockwaves could also be dangerous to bystanders, but that didn’t stop them from testing a prototype nuclear ramjet engine in 1961.

In his memoir, Silent War, Navy special projects director John Craven recalls hoping that a defect would be found in the engine, shelving Project Pluto. To his (and my) relief, the military eventually gave up on its atomic death machine.

Advertisements

, , , , , , , , , , , , , ,

Leave a comment

Epoch tech

Ford NucleonTechnology has a way of defining the times that create it. That’s why we have so many technological “ages.” Humanity has seen the Stone Age, Bronze Age, and even the Atomic Age. In a way, the current Digital Age is just repeating history. Like those past ages, the Digital Age features one epoch-defining technology (the Internet) that people try to apply to everything. If the past is any indication, that won’t work.

In 1945, the United States dropped two Atomic bombs on Japan, ending World War II and beginning an age of nuclear experimentation. In hindsight, playing around with radioactive materials seems a tad silly, but in the 1950s scientists couldn’t get enough of the stuff.

As with the Internet and stone tools, nuclear reactions quickly outgrew their original use. Navy Admiral Hyman G. Rickover quickly figured out that nuclear powered ships would almost never have to be refueled; the nuclear submarine USS Nautilus was launched in 1954. Concurrently, nuclear reactors were seen as a way to provide limitless quantities of cheap electricity.

That’s when things started to get out of hand. Soon, the Air Force was testing airborne reactors for a nuclear-powered bomber. In addition to the obvious safety risks, the reactor and its shielding would have been so heavy that the nuclear bomber would have had trouble taking off. Ford even created a (non-functioning) atomic car, the Nucleon, for the 1958 auto show circuit.

But these were fringe ideas; no one would actually buy a nuclear-powered car. No matter how great a new technology seems, it can’t fit every application. The best example of that is a less-ambitious project: the nuclear cargo ship.

In 1955, President Eisenhower proposed building such a ship as part of his “Atoms for Peace” program, which was meant to showcase peaceful uses of nuclear technology. The NS Savannah seemed like a perfect case: it took the nuclear propulsion technology from Navy warships and applied it to civilian commerce. By the time the Savannah was launched in 1959, the Nautilus had already logged over 60,000 nautical miles on nuclear power, and sailed under the North Pole. Atomic seafaring seemed like a sure bet; like the Nautilus, the Savannah was meant to demonstrate the effectiveness of atomic energy.

NS Savannah cutawayThe keyword is “seemed.” Nuclear power may have worked on an attack submarine, but it was not ideally suited to hauling freight. In fact, the Savannah’s novel system of propulsion upset an ancient precedent in maritime labor. Traditionally, deck officers on merchant ships were paid more than engineering officers. However, on the Savannah, the engineering officers needed extra training to run the ship’s reactors, earning them more pay than the deck officers. The labor dispute ultimately made the ship economically unfeasible.

The cost of running a nuclear ship completely outweighed the Savannah’s positive attributes. She could steam at a heady 24 knots consistently, and only needed to be refueled once every 20 years. Still, the U.S. Maritime Administration determined that it costs $2 million more per year to operate the Savannah than a conventional cargo ship. Nuclear technology was simply too complex for the low-budget world of international shipping. Unlike the Navy, shipping companies only cared about profits, and they didn’t need the Savannah’s speed and fuel economy, not when oil was so cheap.

Today, we risk falling into the same trap. Both private companies and the government think the Internet is the solution to everything. They believe people’s bills, medical records, and shopping will be inherently better in digital form. Digital technology has given the world some amazing things, just as nuclear technology gave the world the Nautilus and the atomic clock. Yet not every problem can be solved with an app, just as not every vehicle can work better with a nuclear reactor.

, , , , , , , , , , , , , , ,

Leave a comment